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The difference electron density has recently been revisited via the method of

joint probability distribution functions [Burla et al. (2010). Acta Cryst. A66, 347–

361]. New Fourier coefficients were devised which were the basis of a new ab

initio method for the solution of the phase problem (i.e. VLD, vive la difference).

In this paper we study the joint probability distribution functions P(F, Fp, FQ),

where FQ is the structure factor corresponding to the ideal hybrid Fourier

synthesis �Q = �� � !�p and � and ! are any pair of real numbers. New Fourier

coefficients for the calculations of any hybrid synthesis are obtained, and the

properties of the corresponding electron-density maps are discussed. The first

applications show the correctness of our theoretical approach and suggest

possible applications in phasing procedures.

1. Notation

We will use the same notation employed by Burla, Caliandro

et al. (2010) (from now on paper I), reported here to make this

paper self-consistent. The necessary supplementary notation is

added.

�; �p: electron densities of the target and of the model

structure.

�q ¼ �� �p: ideal difference electron density; summed to �p it

exactly provides �, no matter the quality of �p.

�Q ¼ ��� !�p: ideal hybrid electron density; summed to !�p

it exactly provides ��, no matter the quality of �p.

N: number of atoms in the unit cell for the target structure.

p: number of atoms in the unit cell for the model structure;

usually p � N, but it may also be p > N.

fj; j ¼ 1; . . . ;N: atomic scattering factors for the target struc-

ture (thermal factor included).

F ¼
PN

j¼1 fj expð2�ihrjÞ ¼ jFj expði’Þ: structure factor of the

target structure.

Fp ¼
Pp

j¼1 fj expð2�ihr0jÞ ¼ jFj expði’pÞ, where r0j ¼ rj þ�rj:

structure factor of the model structure. �rj is the misfit

between the model and target atomic positions.

Fq ¼ F � Fp ¼ jFqj expði’qÞ: structure factor of the ideal

difference structure.

FQ ¼ �F � !Fp ¼ jFQj expði’QÞ: structure factor of the ideal

hybrid electron density.

E = Aþ iB = R expði’Þ, Ep = Ap þ iBp = R expði’pÞ, Eq =

Aq þ iBq = Rq expði’qÞ, EQ = AQ þ iBQ = RQ expði’QÞ:

normalized structure factors of F, Fp, Fq and FQ,

respectively.

�N ¼
PN

j¼1 f 2
j ;�p ¼

Pp
j¼1 f 2

j .

R0p; R0q; R0Q: structure factors pseudonormalized with respect

to the target structure (i.e. R0p ¼ jFpj=�
1=2
N , R0q ¼ jFqj=�

1=2
N ,

R0Q ¼ jFQj=�
1=2
N Þ.

D ¼ hcosð2�h�rÞi: the average is performed per resolution

shell.

�A ¼ Dð�p=�NÞ
1=2.

�2
R ¼ hj�j

2
i=�N , where hj�j2i is the measurement error.

e ¼ 1þ �2
R.

Ii(x): modified Bessel function of order i.

m = hcosð’� ’pÞi = I1ðXÞ=I0ðXÞ = D1ðXÞ, where X =

2�ARRp=ðe� �
2
AÞ. m is calculated from the (von Mises type)

conditional probability Pð’jR;Rp; ’pÞ.

EDM: electron-density modification.

DEDM: difference electron-density modification.

RESID: the sum is over the h reflections.

CORR: correlation factor between the electron-density map

calculated by using observed moduli and phases ’p, and the

map computed via observed moduli and phases ’ calculated

from deposited coordinates.

2. Introduction

Calculating an observed Fourier synthesis (say �obs) is routine

work today: observed moduli are combined with model phases

via a weight m taking into account phase uncertainty,

m ¼ D1½2�ARRp=ð1� �
2
AÞ�: ð1Þ

As mentioned in x1, the value of m arises from the joint

probability distribution PðR;Rp; ’; ’pÞ obtained by Srinivasan

& Ramachandran (1965): the weight is able to take into

account errors in the model coordinates and generalizes a



previous weighting scheme suggested by Sim (1959), based on

structure models without error. More recently a paper by

Caliandro et al. (2005) generalized further on such weight, to

also take into account measurement errors,

m ¼ D1½2�ARRp=ðe� �
2
AÞ�: ð2Þ

Today the residual electron density (see, among others,

Cochran, 1951; Henderson & Moffat, 1971; Nixon & North,

1976; Ursby & Bourgeois, 1997) is usually calculated according

to Read (1986): he proposed to reduce the model bias

component by using the coefficient

ðmjFj �DjFpjÞexpði’pÞ: ð3Þ

In paper I new coefficients for a difference Fourier synthesis

were obtained via the study of the joint probability distribu-

tion

PðR;Rp;Rq; ’; ’p; ’qÞ: ð4Þ

Equation (4) was derived by taking into account errors in both

the model and measurements, and suggested the following

coefficient,"
ðmR� �ARpÞ � R0pð1�DÞ

e� �2
A

1� �2
A

� �#
expði’pÞ; ð5Þ

containing the classical Read difference term ðmR �

�ARpÞexpði’pÞ and the flipping term �R0pð1�DÞ

� e� �2
A=1� �2

Að Þ expði’pÞ. The applications clearly showed

that the difference electron density calculated via the coeffi-

cients in equation (5) is well correlated with the ideal �q map

even if the model structure is random, and coincides with the

synthesis calculated via the coefficients in equation (3) when

the model is well correlated with the target structure. The

mean features of the corresponding electron-density map are

not traditional: the map shows very strong negative peaks

where model atoms do not overlap with target atoms, medium-

intensity negative peaks where model and target atoms

overlap, and medium-intensity positive peaks where target

atoms do not overlap with model atoms.

The unusual properties of the new difference electron

density were employed by Burla, Giacovazzo & Polidori

(2010) to design the VLD (vive la difference) algorithm, aimed

at passing from an initial random model to the target structure.

The method was able to solve small and medium-sized struc-

tures, and proteins (Burla et al., 2011).

Numerous papers may be found in the literature dedicated

to hybrid Fourier syntheses �Q ¼ ��� !�p (among others,

Ramachandran & Srinivasan, 1970; Dodson & Vijayan, 1971;

Main, 1979; Vijayan, 1980), where � and ! are any pair of real

numbers. According to Read (1986) they may be estimated via

the coefficients

ð�mjFj � !DjFpjÞexpði’pÞ: ð6Þ

From equation (6) coefficients for the observed synthesis are

obtained by fixing � ¼ 1; ! ¼ 0, coefficients for the difference

synthesis by choosing � ¼ 1; ! ¼ 1.

On the basis of the above considerations it seems advisable

to apply the method of joint probability distribution functions,

used in paper I for the study of the difference Fourier synth-

esis, to derive the best coefficients to calculate hybrid Fourier

syntheses. The first aim of this paper is therefore the study of

the distribution P E;Ep;EQ

� �
: we will also discuss the main

features of the new syntheses and suggest their potential

applications in phasing procedures.

3. The distribution P(E, Ep, EQ)

Let

�QðrÞ ¼ ��ðrÞ � !�pðrÞ ð7Þ

be the ideal hybrid synthesis: � and ! are any pair of rational

numbers. By Fourier transform of equation (7) the following

relation is obtained:

FQh ¼ �Fh � !Fph ¼ jFQhjexpði’QhÞ:

To obtain an estimate of the synthesis [equation (7)] we will

derive the joint probability distribution function P E;Ep;EQ

� �
under the following conditions:

(a) The coordinates of the vectors rj, j = 1, . . . , N are the

primitive random variables, assumed to be uniformly distrib-

uted in the unit cell.

(b) The variables �rj, j = 1, . . . , p, are local variables

randomly distributed around zero.

(c) Two supplementary primitive random variables, � and

#, are introduced, arising from the experimental uncertainty

of the observed structure-factor moduli. Accordingly

F ¼
P

fj expð2�ihrjÞ þ j�jexpði#Þ:

j�jexpði#Þmay be considered to be the complex error over the

structure factor.

(d) All the primitive random variables are assumed to be

statistically independent of each other.

Such a statistical model leads to the following mathematical

definitions,

A ¼

�PN
j¼1

fj cosð2�hrjÞ þ j�j cos#

��
ð"�NÞ

1=2

B ¼

�PN
j¼1

fj sinð2�hrjÞ þ j�j sin#

��
ð"�NÞ

1=2

Ap ¼
Pp
j¼1

fj cos½2�hðrj þ�rjÞ�=ð"�pÞ
1=2

Bp ¼
Pp
j¼1

fj sin½2�hðrj þ�rjÞ�=ð"�pÞ
1=2

AQ ¼

�
�
PN
j¼1

fj cosð2�hrjÞ � !
Pp
j¼1

fj cos½2�hðrj þ�rjÞ�

��
ð"�QÞ

1=2

BQ ¼

�
�
PN
j¼1

fj sinð2�hrjÞ � !
Pp
j¼1

fj sin½2�hðrj þ�rjÞ�

��
ð"�QÞ

1=2;

ð8Þ

where " is the statistical Wilson coefficient, correcting for the

expected intensities in reciprocal-lattice zones.
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We obtained for �Q, the scattering power corresponding to

the Q structure, the following expression:

�Q ¼ �
2�N þ !

2�p � 2!�D�p: ð9Þ

The value of �Q depends on the quality of the model: it tends

to �Nð� � !Þ
2 when �A ¼ 1 (in this case D approaches unity

and �p approaches �N), and to �2�N þ !
2�p when �p

progressively loses (up to D = 0) its isomorphism with �. In the

latter case �Q may be much larger than �N , and �QðrÞ will

show �N positive peaks and !p negative peaks.

Let us now consider how the normalized structure factors of

the three derivative structures are correlated: their correlation

or anticorrelation is basic for the next calculations and defines

the algebraic expression of the joint probability distribution

PðE;Ep;EQÞ. We obtain

hEEpi ¼ �A; ð10Þ

hEpEQi ¼
ð�D� !Þ�p

�1=2
p �1=2

Q

¼
��A�1=2

N � !�1=2
p

�1=2
Q

; ð11Þ

hE EQi ¼
��N � !D�p

�1=2
N �1=2

Q

��1=2
N � !�A�1=2

p

�1=2
Q

: ð12Þ

We note:

(a) Since 0 � �A � 1, hRRp cosð’� ’pÞi is not expected to

be negative: its value should increase (up to 1) when the model

becomes closer to the target structure.

(b) hRpRQ cosð’p � ’QÞi attains its minimum value

[say �!�1=2
p =ð�2�N þ !

2�pÞ
1=2] in the case of a complete lack

of isomorphism: then Ep and EQ are strongly anticorrelated.

The anticorrelation attains a maximum when !� �: this

conclusion has to be kept in mind because a strong anti-

correlation between Ep and EQ allows ’Q to be estimated

given ’p, even when ’p is random. If � >! and �A is suffi-

ciently large, positive values of hEpEQi are allowed: then �Q

becomes closer to �, and consequently Ep and EQ are posi-

tively correlated.

(c) if � � ! then E and EQ are positively correlated

particularly when D = 0: in this case RRqcosð’� ’qÞ �

�½�Nð�
2�N þ !

2�pÞ�
1=2.

The characteristic function of the distribution P E;Ep;EQ

� �
is

Cðu; up; uQ; v; vp; vQÞ ¼ exp
n
� ð1=4Þ½eðu2

þ v2
Þ þ ðu2

p þ v2
pÞ

þ ðu2
Q þ v2

QÞ þ 2�Aðuup þ vvpÞ

þ 2�AQðuuQ þ vvQÞ

þ 2�ApQðupuQ þ vpvQÞ�

o
;

ð13Þ

where u; up; uQ;v; vp; vQ are carrying variables associated with

A, Ap, AQ, B, Bp, BQ, respectively,

�AQ ¼
��1=2

N � !�A�1=2
p

�1=2
Q

�ApQ ¼
��A�1=2

N � !�1=2
p

�1=2
Q

:

The distribution PðA;Ap;AQ;B;Bp;BQÞ is the Fourier

transform of equation (13). After some calculations, not

quoted for brevity, we obtain in polar coordinates

PðR;Rp;RQ; ’; ’p; ’QÞ

’ ��3e�1
ðdet LÞ�1RRpRQ expf�½�11R2

þ �22R2
p

þ �33R2
Q þ 2�12RRp cosð’� ’pÞ þ 2�13RRQ cosð’� ’QÞ

þ 2�23RpRQ cosð’p � ’QÞ�g: ð14Þ

The distribution in equation (14) is a six-dimensional Gaussian

distribution, the coefficients of which are stated below:

ðdet LÞ ¼
ðe� 1Þð1� �2

AÞ�
2�N

e�Q

;

�11 ¼
1

ðe� 1Þ
; �22 ¼

�Q

�2�N

1

1��2
A

þ
�p

�2�N

!2

e� 1
;

�33 ¼
�Q

�2�N

	
1

e� 1
þ

1

1� �2
A



; �12 ¼ �

!

�

�
�p

�N

�1=2
1

e� 1
;

�13 ¼ �
1

�

�
�Q

�N

�1=2
1

e� 1
;

�23 ¼
�p�Q

� �1=2

�N

	
!ðe� �2

AÞ

�2ðe� 1Þð1� �2
AÞ



�

�
�Q

�N

�1=2
�A

�ð1� �2
AÞ
:

The distribution given by equation (14) is the basic result of

this paper.

4. The conditional distribution P(uQ|R, Rp, RQ, up)

If we have a model, ’p is known and only two conditional

distributions will be of interest: P ’QjR;Rp;RQ; ’p

� �
and

Pð’jR;Rp;RQ; ’p; ’QÞ. In both cases RQ is assumed to be a

known parameter, but, as will be emphasized in the following

sections, only estimates of RQ are available in practice. Indeed

prior knowledge of Rp;R and ’p does not geometrically

fix the value of RQ. Accordingly, the distributions

P ’QjR;Rp;RQ; ’p

� �
and Pð’jR;Rp;RQ; ’p; ’QÞ should be

considered as asymptotic, accurate in the case in which the

accuracy of the RQ estimate is large. To provide the user with a

simple example, the general practice for the unweighted

difference Fourier synthesis was to assume RQ ¼ jR� Rpj

and derive for ’Q the following estimate: ’ ¼ ’p if

R� Rp > 0, ’ ¼ ’p þ � if R� Rp < 0. Our distribution

P ’QjR;Rp;RQ; ’p

� �
allows the estimation of the accuracy of

’Q given as R;Rp;RQ; ’p, or, more realistically, given as

R;Rp; ’p, and an estimate of RQ.

In this section we will derive the conditional distribution

P ’QjR;Rp;RQ; ’p

� �
; the study of Pð’jR;Rp;RQ; ’p; ’QÞ will

be discussed in x5. To simplify the calculations we will first use

the assumption ’p ’ ’ (this holds when both R and Rp are

sufficiently large), to obtain
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Pð’QjR;Rp;RQ; ’pÞ ’ ½2�I0ðGQÞ�
�1 expfGQ cosð’Q � ’pÞg;

ð15Þ

where

GQ ¼ �2RQð�13Rþ �23RpÞ:

In accordance with x3,

GQ ¼
2R0Q

�2ðe� 1Þ
ð�R� !R0pÞ � ð!� �DÞ

ðe� 1Þ

1� �2
A

R0p

� �
; ð16Þ

and, in terms of structure factors,

GQ ¼
2

�2ðe� 1Þ

jFQj

�N

ð�jFj � !jFpjÞ � ð!� �DÞ
ðe� 1Þ

1� �2
A

jFpj

� �
:

ð17Þ

If we replace the condition ’p ’ ’ by the better approxima-

tion (Read, 1986) jFjexpði’Þ ¼ mjFjexpði’pÞ, we obtain

GQ ¼
2R0Q

�2ðe� 1Þ

�
ð�mR� !�ARpÞ

� R0p

	
!ð1�DÞ þ ð!� �DÞ

ðe� 1Þ

1� �2
A


�
ð18Þ

and, in terms of structure factors,

GQ ¼
2

�2ðe� 1Þ

jFQj

�N

�
ð�mjFj � !DjFpjÞ

� jFpj

	
!ð1�DÞ þ ð!� �DÞ

ðe� 1Þ

1� �2
A


�
:

ð19Þ

We observe:

(a) GQ is the sum of two terms: the first includes the classical

difference term ð�mjFj � !DjFpjÞ, the second in some condi-

tions flips the contribution of the model electron density. It

really flips if ! is sufficiently large (e.g. if !>�) and D is

sufficiently small (model badly correlated with the target).

(b) The reliability parameter GQ increases with R0Q, and

is inversely proportional to �2. Values � � ! do not allow

reasonable ’Q estimates when the model is poorly correlated

with the target: indeed, for such values of �, �Q tends to

coincide with �obs, which by hypothesis is a poor representa-

tion of the target. Values � � ! permit good ’Q estimates if

the model is well correlated with the target: in this case �Q

again tends to coincide with �obs and ’Q is expected to be close

to ’.

(c) The reliability of the ’Q estimates increases when

� � !. If the model is poorly correlated with the target, the

Read term vanishes and the flipping term becomes quite large.

As a consequence jGQj becomes very large, so satisfying the

condition for good ’Q estimates. Their quality is also expected

to be high when the model is strongly correlated with the

target. This result suggests particular attention towards such

mixed Fourier syntheses.

The above conclusion agrees well with the result recently

obtained by Giacovazzo & Mazzone (2011), according to

which the variance in a generic point r of �QðrÞ ¼ ��� !�p is

proportional to �2: i.e.

var �QðrÞ ¼ �
2 var �ðrÞ;

where var �ðrÞ is the variance at the point r of the electron

density �ðrÞ. Evidently, the variance of�QðrÞ, and therefore the

expected error for the ’Q estimate, is expected to be smaller

when � <! than when � >!.

5. The conditional distribution P(u|R, Rp, RQ, up, uQ)

From equation (14) the conditional distribution

Pð’jR;Rp;RQ; ’p; ’QÞ ¼ ½2�I0ð�QÞ�
�1 exp½�Q cosð’�  Þ�

ð20Þ

is obtained, where  is the most probable value of ’, given by

tan ¼
!R0p sin ’p þ R0Q sin ’Q

!R0p cos ’p þ R0Q cos ’Q

; ð21Þ

and

�Q ¼ 2R½�ðe� 1Þ��1
½!2R02p þ R02Q þ 2!R0pR0Qcosð’p � ’QÞ�

1=2

ð22Þ

is its reliability factor.

Equations (21) and (22) provide the best estimate of ’ given

R;Rp;RQ; ’p; ’Q via the sum of two contributions, the first

arising from �p and the second from �Q. Again the reliability

factor is large when the ratio !=� is large, thus confirming that

the most interesting Fourier syntheses are those for which

! � �.

In equation (21) the pseudonormalized structure factor R0Q
may be expressed in terms of the normalized structure factor

RQ and of the ratio (frequently known a priori) �p=�N using

equation (9),

R0Q ¼ RQ

�
�Q=�N

�1=2
;

where

�Q=�N

� �1=2
¼ �2

þ !2
�p

�N

� 2!�D
�p

�N

	 
1=2

:

Equation (21) suggests that the most probable value of ’ may

be derived without any weighting scheme, owing to the fact

that �� is just the sum of !�p and �Q. However, in practice,

values of EQ remain unknown and only their estimates

become available: this suggests that a more general tangent

expression is

tan ¼
wp!R0p sin ’p þ wQR0Q sin ’Q

wp!R0p cos ’p þ wQR0Q cos ’Q

ð23Þ

and

�Q ¼ 2Rðe� 1Þ�1
½w2

p!
2R02p þ w2

QR02Q

þ 2!wpwQR0pR0Qcosð’p � ’QÞ�
1=2: ð24Þ
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6. Coefficients for (sFo � xFc) Fourier syntheses

The ideal �Q map is essentially a sum of Fourier syntheses and

may be decomposed in a pair of components in different ways.

For example, the first component may be �Fo and the second

component may be !Fc, but the decomposition may also be

made according to the following rule:

�Q ¼ ð� � !Þ�þ !ð�� �pÞ if � >!;

�Q ¼ ð� � !Þ�p þ �ð�� �pÞ if � <!:

In this case, in accordance with Read (2001), �Q may be

calculated:

(i) if � >!, via coefficients

½ð� � !ÞmjFj þ !ðmjFj �DjFpjÞ� expði’pÞ;

(ii) if � <!, via coefficients

½ð� � !ÞDjFpj þ �ðmjFj �DjFpjÞ� expði’pÞ:

In both cases the coefficients reduce to ð�mjFj �

!DjFpjÞexpði’pÞ, or equivalently, in the case of E maps,

ð�mR� !�ARpÞexpði’pÞ.

The theoretical results obtained in x4 suggest the following

Fourier coefficients:�
ð�mR� !�ARpÞ � R0p !ð1�DÞ þ ð!� �DÞ

ðe� 1Þ

1� �2
A

	 
�
expði’pÞ;

ð25Þ

or, in terms of structure factors,�
ð�mjFj � !DjFpjÞ � jFpj !ð1�DÞ þ ð!� �DÞ

ðe� 1Þ

1� �2
A

	 
�
expði’pÞ:

ð26Þ

If ! ¼ � ¼ 1, equations (25) and (26) reduce to the difference

Fourier coefficients derived in paper I.

Simplified expressions may be obtained by

neglecting the contribution of ð!� �DÞ½ðe� 1Þ=ð1� �2
AÞ� ¼

ð!� �DÞ½�2
R=ð1� �

2
AÞ� (this is particularly straightforward

when the model is far away from the target structure). Then

the Fourier coefficients (see Main, 1979)

ð�mR� !R0pÞexpði’pÞ ð27Þ

or

ð�mjFj � !jFpjÞexpði’pÞ ð28Þ

arise. The coefficients (27) and (28), when used as coefficients

of a Fourier synthesis, give rise to an electron-density map

which is the difference between a weighted observed Fourier

synthesis, scaled by the factor �, and a calculated synthesis

scaled by !. This schematization however does not help to

understand the main features of the map. Its properties can be

better understood if the coefficients (27) or (28) are rewritten

as

½�ðmR� �ARpÞ � ð!� �DÞR0p�expði’pÞ ð29Þ

or

½�ðmjFj �DjFpjÞ � ð!� �DÞjFpj�expði’pÞ: ð30Þ

We note:

(a) The first term in equation (29) coincides with the clas-

sical difference term. Roughly speaking, it is expected to

generate electron-density maps with positive peaks where

atoms of the target do not overlap with atoms of the model

structure, and negative peaks where atoms of the model do not

overlap with atoms of the target structure. The peak intensities

are magnified by the factor �. It is well known that maps

calculated using the difference term as a coefficient do not

provide useful information when the model is poor.

(b) The second term of equation (29) flips the model elec-

tron density if !>�D: the flipping is stronger when the model

is poor. If � ¼ ! we are in the case described in paper I: if the

model is very poor, the flipping term is dominant with respect

to the difference term and the corresponding difference

Fourier synthesis is well correlated with the ideal �q map. If

� >! the corresponding map is constituted by a dominant

observed Fourier synthesis plus a difference Fourier synthesis:

very high �=! ratios makes the latter negligible no matter

whether the model is poor or not. The flipping term becomes

more and more dominant with increasing values of the !=�
ratio (this feature is particularly dominant when the model is

poor): in this situation the negative model peak intensities are

emphasized with respect to the peak intensities of the map

calculated via Read coefficients. If !� � the Fourier coeffi-

cients reduce to those of the flipped model electron density:

this extreme case is not very useful for phasing because it only

depends on the model.

(c) Hybrid Fourier syntheses, as well as observed Fourier

syntheses, are often involved in cyclic EDM procedures

(Cowtan, 1994, 1999; Abrahams, 1997; Abrahams & Leslie,

1996; Giacovazzo & Siliqi, 1997) where electron-density maps

are first modified according to suitable criteria, and then

Fourier inverted to generate new structure-factor estimates. It

is expected that EDM techniques lead to models more

correlated with the target structure. To better describe the role

of the hybrid Fourier syntheses calculated with coefficients

(27) or (28) in EDM procedures we adopt the following

notation: ’est and ’Qest are the phases used in the calculation of

the observed and of the hybrid Fourier synthesis, respectively,

’inv and ’Qinv are the corresponding phase values obtained by

Fourier inversion of the modified maps. We observe:

(d) In the observed Fourier syntheses ’est ¼ ’p always, and

m|F | or m|E | is the coefficient modulus. In a hybrid Fourier

synthesis there is always a subset of reflections for which

’Qest ¼ ’p þ � (see Table 1). Therefore, hybrid and observed

Fourier syntheses should never be confused (see below).

(e) With increasing values of the �=! ratio, hybrid Fourier

syntheses become more and more similar to the observed

synthesis (indeed the percentage of reflections for which

’Qest ¼ ’p þ � diminishes with the ratio �=!, see Table 1). If

the model is badly correlated with the target such hybrid maps

will also be badly correlated with the corresponding ideal

hybrid maps.
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(f) For hybrid syntheses calculated via �mjFj � !jFpj

coefficients, the percentage of reflections for which ’Qest ¼

’p þ � is larger than for a �mjFj � !DjFpj synthesis (see

Table 1). In other words, �mjFj � !jFpj syntheses emphasize

the weight of the difference Fourier synthesis. That is the

reason why the convergence from a random model to the

target needs the combination of the �mjFj � !jFpj synthesis

with the tangent step described in x5.

(g) For a hybrid Fourier synthesis with � <!, the number of

reflections for which ’ ¼ ’p þ � is larger than for a hybrid

Fourier synthesis with � >! (indeed larger is the number of

reflections for which jFj< ð!=�mÞDjFpj or jFj< ð!=�ÞDjFpj,

see Table 1). As a consequence, a hybrid density map calcu-

lated with � <! will differ from an observed synthesis more

than a map with � >!.

(h) To allow the reader to appreciate some numerical

examples of subsets of reflections for which ’Qest ¼ ’p þ �,

Table 2 shows the results for the protein 1e8a (experimental

data resolution 1.95 Å, 17 174 measured unique reflections) in

two different situations: in the first a poor model is available

(mean phase error = 70	), in the second a good model has

already been obtained (mean phase error = 49	). The reader

will easily verify that:

(i) a hybrid synthesis should never be confused with an

observed synthesis: indeed in the hybrid there is always a non-

negligible percentage of reflections to which ’Qest ¼ ’p þ � is

assigned;

(ii) for the �mjFj � !jFpj synthesis the percentage of

reflections for which ’Qest ¼ ’p þ � is always larger than for

the �mjFj � !DjFpj synthesis;

(iii) the percentages tend to diminish when the model

improves, particularly for �mjFj � !jFpj syntheses;

(iv) the percentages for !>� are larger than for !<�.

Both �mjFj � !DjFpj and �mjFj � !jFpj Fourier syntheses

may converge to the ideal ð� � !ÞmjFj synthesis if a virtuous

EDM technique is applied (then Fp tends to F and both m and

D tend to unity). Particularly useful cases are 2mjFj �DjFpj

and 2mjFj � jFpj maps. The first was originally devised to

reduce the model bias. Perfect convergence is not always

guaranteed: it depends on the initial error (large initial errors

usually do not allow convergence), on data resolution etc.

Some classes of reflections are more resistant to convergence,

owing to the intrinsic nature of the Fourier synthesis. For

example, during an EDM procedure using �mjFj � !DjFpj

syntheses, the reflections for which jFj< ð!=�mÞDjFpj tend to

show (after the map Fourier inversion) the value ’Qinv ¼

’Qest ¼ ’p þ �, so disturbing the convergence process. This is

mainly due to the intrinsic difference between �Q and �, and

therefore between ’Q and ’. If the VLD technique is used (i.e.

the phase indications provided by the modified hybrid Fourier

map are combined with the tangent formula as described in

x5), this tendency may be diminished.

From the above considerations the following conclusions

arise: if one is interested in phasing a target structure starting

from a random or very poor model, the most interesting

Fourier syntheses are those with !>�: these syntheses

explore the phase space faster because they allow rapid

changes of the model, and imply accurate estimates of the ’Q

phases. The passage from ’Q to ’ requires an additional step,

i.e. the use of the tangent procedure described in x5. If one has

to refine a model correlated with the target structure (e.g.

obtained by molecular replacement or by anomalous-

dispersion techniques) hybrid Fourier syntheses with ! � �
are also advisable.

7. Applications

The following preliminary tests aimed to check the validity of

the probabilistic theory described above: in particular, we

checked whether the quality of the hybrid maps complies with

theoretical expectations. We used the same 18 proteins

employed as test cases in paper I (see Table 3). The models

were found via molecular replacement using the program

REMO09 (Caliandro et al., 2009): accordingly, ’p are the

phase values available at the end of the molecular-

replacement process (without any attempt at phase refine-

ment, to have a wide range of CORR). The test structures

were arranged in decreasing order of CORR, so that the high

quality models are at the top of Table 3. The columns Target

and Model indicate the PDB code of the target and model

structure, and RES is the data resolution. The corresponding

h�’i values (say the average phase error between model and

target structure) are also quoted, as reference values for the

phase errors reported in Table 4. The reader should note that

the CORR values in Table 3 of this paper do not coincide with
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Table 1
’est values for each type of hybrid Fourier syntheses.

Type ’est

mjFjexpði’pÞ ’ ¼ ’p always
mjFj �DjFpjexpði’pÞ ’ ¼ ’p þ � if jFj<DjFpj=m,

otherwise ’est ¼ ’p

mjFj � jFpjexpði’pÞ ’ ¼ ’p þ � if jFj< jFpj=m,
otherwise ’est ¼ ’p

2mjFj �DjFpjexpði’pÞ ’ ¼ ’p þ � if jFj<DjFpj=ð2mÞ,
otherwise ’est ¼ ’p

2mjFj � jFpjexpði’pÞ ’ ¼ ’p þ � if jFj< jFpj=ð2mÞ,
otherwise ’est ¼ ’p

�mjFj � !DjFpjexpði’pÞ ’ ¼ ’p þ � if jFj< ð!=�mÞDjFpj,
otherwise ’est ¼ ’p

�mjFj � !jFpjexpði’pÞ ’ ¼ ’p þ � if jFj< ð!=�ÞDjFpj,
otherwise ’est ¼ ’p

Table 2
Protein 1e8a, two available models of different accuracy.

See text for details. For each model we show, for the lowest-order hybrid
Fourier syntheses, the percentage of reflections (perc1 and perc2) for which
’Qest ¼ ’p þ �.

Synthesis type perc1 (%) perc2 (%)

mjFjexpði’pÞ 0 0
ðmjFj �DjFpjÞexpði’pÞ 62 53
ðmjFj � jFpjÞexpði’pÞ 95 65
ð2mjFj �DjFpjÞexpði’pÞ 37 22
ð2mjFj � jFpjÞexpði’pÞ 77 29
ðmjFj � 2DjFpjÞexpði’pÞ 86 91
ðmjFj � 2jFpjÞexpði’pÞ 99 95



those reported in Table 1 of paper I: the values reported here

were obtained using the latest release of REMO09. To

increase the CORR range and to study the accuracy of our

theory for very poor models, the last seven test cases delib-

erately correspond to false molecular-replacement solutions.

Of particular interest is the test case 2iff, for which we used a

partial model (129 residues against 556 of the model). In all

our calculations maps were calculated via normalized moduli.

To compare the various Fourier syntheses with ideal ones

[i.e. those calculated via coefficients EQ�! ¼ �E� !Ep ¼

jEQ�!jexpði’Q�!Þ] we used the following notation in Table 3:

ð�mR� !�ARpÞ ð31Þ

is the best Fourier coefficient according to Read (1986). It will

be denoted by ðEQ�!Þ31 from now on;

ð’Q�!Þ31 ¼ ’p or ’p þ � according to whether ðEQ�!Þ31 is

positive or negative;

ð�Q�!Þ31 will denote the corresponding hybrid map.

ð�mR� !�ARpÞ � R0p !ð1�DÞ þ ð!� �DÞ
ðe� 1Þ

1� �2
A

	 

ð32Þ

is the best Fourier coefficient according to this paper. It will be

denoted by ðEQ�!Þ32 from now on;

ð’Q�!Þ32 ¼ ’p or ’p þ � according to whether ðEQ�!Þ32 is

positive or negative;

ð�Q�!Þ32 will denote the corresponding hybrid map.

h�’Q�!i31 ¼ hjð’Q�!Þ31 � ’Q�!ji. It is the average phase

error of the hybrid Fourier synthesis, calculated via coeffi-

cients (31), with respect to the ideal hybrid Fourier synthesis.

ðCORRQ�!Þ31 is the correlation between the corresponding

hybrid electron-density maps.

h�’Q�!i32 ¼ hjð’Q�!Þ32 � ’Q�!ji. It is the average phase

error of the hybrid Fourier synthesis, according to coefficients

(32), with respect to the ideal hybrid Fourier synthesis.

ðCORRQ�!Þ32 is the correlation between the corresponding

hybrid electron-density maps.

To check how well ð�Q�!Þ31 and ð�Q�!Þ32 approximate the

ideal �Q�! map we will only check the pairs ð�; !Þ ¼
ð1; 1Þ; ð2; 1Þ; ð1; 2Þ: the trend for different ð�; !Þ pairs may be

easily derived from our results. In Table 4 for each test

structure the values of ðCORRQ�!Þ31, h�’Q�!i31, ðCORRQ�!Þ32

and h�’Q�!i32 are shown for ð�; !Þ ¼ ð1; 1Þ; ð2; 1Þ; ð1; 2Þ. We

observe:

(i) As a general trend, ðCORRQ11Þ31 decreases and

h�’Q11i31 increases with decreasing values of CORR. The

results confirm those obtained in paper I and the common

belief that the classic difference Fourier synthesis provides

useful information only when the model structure is suffi-

ciently accurate.

(ii) In accordance with theoretical expectations, h�’Q11i32 is

nearly equivalent to h�’Q11i31 when good models are avail-

able, and is by far superior in bad or random models, for which

it attains the minimum values. ðCORRQ11Þ32 is always larger

than ðCORRQ11Þ31 even for good models: that suggests a

better correlation between moduli of the ideal difference

synthesis and moduli of the coefficients (32).

(iii) To understand the behavior of the �Q21 estimates, we

notice that

�Q21 ¼ �Q10 þ �Q11 
 �þ �Q11

and that any estimate of �Q21 will be the sum of estimates: e.g.

ð�Q21Þ31 ¼ �obs þ ð�Q11Þ31 and ð�Q21Þ32 ¼ �obs þ ð�Q11Þ32:

If CORR is sufficiently large, �obs is expected to be very close

to � and �Q11 is expected to be negligible with respect to �obs:

as a consequence ð�Q21Þ31 and ð�Q21Þ32 will be good approx-

imations of �Q21 (see the corresponding columns in Table 4).

Evidently the good qualities of ð�Q21Þ31 and ð�Q21Þ32 rely on the

good quality of �obs: that is the reason why hybrid syntheses

with � = 2 and ! = 1 are successfully used to reduce the model

bias in protein crystallography.

Let us now consider the extreme cases in which CORR is

very small (last lines in Table 4). Then � is badly estimated by

�obs and �Q11 is no longer negligible with respect to �obs. Since

�Q11 is badly estimated via coefficients (31), ð�Q21Þ31 will be a

poor approximation of �Q21. The reader will notice that

negative values of CORR are obtained when the model is

poor and coefficients (31) are used. That is probably due to the

fact that the model has been deliberately translated in the

solvent region of the target.

Different behavior is expected for ð�Q21Þ32 when CORR is

small: indeed, even if �obs is a poor approximation of �,

ð�Q11Þ32 is a relatively good estimate of �Q11: accordingly,

ð�Q21Þ32 is a relatively good approximation of �Q21, no matter

whether the model structure is poor or accurate.

(iv) In accordance with (iii)

�Q12 ¼ �p þ �Q11
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Table 3
Details of the test structures.

For each test structure: Target and Model are the PDB codes of the target and
of the model, respectively, Res is the target data resolution limit (in Å); NresT
and NresM are the number of residues for the target and model, respectively;
CORR is the correlation factor between the electron-density map calculated
using observed normalized moduli and phases ’p, and the map calculated via
observed normalized moduli and phases ’ calculated from deposited
coordinates; h|�’|i is the corresponding average phase error. PDB codes
followed by primes indicate the same target structure but different model
structures.

Target Res NresT Model NresM h|�’|i CORR

1kf3 1.0 124 7rsa 124 26 0.93
6rhn 2.2 115 4rhn 115 29 0.91
2sar 1.8 192 1ucl, chain A 96 41 0.83
1zs0 1.6 163 1i76 163 43 0.79
1a6m 1.0 151 1mbc 153 43 0.77
1na7 2.4 329 1m2r 327 45 0.76
2p0g 2.3 318 2oka 336 50 0.75
1lys 1.7 258 2ihl 129 57 0.63
1kqw 1.8 134 1opa 133 59 0.60
6ebx0 1.7 124 3ebx, 2 copies 124 59 0.59
6ebx 1.7 124 3ebx 62 59 0.59
9pti0 1.2 58 1lri 98 87 0.01
2pby 2.1 1155 1mki 598 89 0.01
2iff 2.6 556 1hem 129 88 0.00
9pti 1.2 58 3ebx 62 88 0.00
1yxa 2.1 740 1qlp 372 89 0.00
1s31 2.7 273 1c8z 265 89 �0.01
1cgn 2.2 127 2ccy 127 90 �0.01



and, for their estimates,

ð�Q12Þ31 ¼ �p þ ð�Q11Þ31 and ð�Q12Þ32 ¼ �p þ ð�Q11Þ32:

Since �p is fixed by prior information, the only uncertain

source for the phases arises from the quality of the �Q11 esti-

mate.

If CORR is high, �Q11 is negligible with respect to �p: in

these cases �Q11 is well estimated using both coefficients (31)

and (32), and, as a result, both ð�Q12Þ31 and ð�Q12Þ32 are good

approximations of �Q12.

If CORR is small ð�Q11Þ31 is a poor estimate of �Q11, but its

combination with �p makes ð�Q12Þ31 a sufficiently good esti-

mate of �Q12. Obviously the best �Q12 estimates are obtained

by using coefficients (32) (see the last column in Table 4).

(v) For 2iff the efficiency of coefficients (32) is smaller than

in other cases. The reason was already theoretically foreseen

in paper I for the difference electron density when �p � �N :

its correctness was checked by Burla, Caliandro et al. (2010),

Burla, Giacovazzo & Polidori (2010) and Burla et al. (2011) in

the first applications of the VLD algorithm. To better under-

stand the results for other types of hybrid syntheses, we

rewrite coefficient (32) as

ð�mR� !�ARpÞ � Rp

�
! ð�p=�NÞ

1=2
� �A

� �
þ !ð�p=�NÞ

1=2
� ��A

� � ðe� 1Þ

1� �2
A

�
:

When �p=�N � 1, �A is small (by definition) and the flipping

term is vanishing unless !>�. In this last case the flipping

term is strengthened and maps calculated via coefficients (32)

provide a good approximation of the ideal hybrid synthesis. In

simpler words, coefficients (32) work better when the random

model shows a scattering power equivalent to (rather than

smaller than) that of the target.

According to this result, in the VLD

algorithm complete random models

are always assumed to be starting

points for the phasing process.

(vi) The properties of the hybrid

Fourier syntheses with � = 3, ! = 1 or

� = 1, ! = 3 can be easily estimated

from (i)–(iv). It may be stated that

syntheses for which � � ! would be

less able to reduce the model bias

during EDM procedures and synth-

eses with !� � would be too biased

toward the model to be useful.

8. Conclusions

We have described a probabilistic

method for the study of the joint

probability distribution P E;Ep;EQ

� �
,

where the three normalized structure

factors are the Fourier transform of

the target, of a model and of a hybrid electron density,

respectively.

The theory allows the best coefficients for any type of

hybrid Fourier synthesis and the estimates of their reliability

to be derived. The new coefficients are sums of the Read

coefficient and of a flipping component, which is dominant

when the model is poor. Emphasis is given to hybrid syntheses

of the type ��� !�p with ! � �: the coefficients suggested in

this paper are expected to allow their accurate calculation

even when model and target structures are uncorrelated. The

applications to practical cases show full agreement between

theoretical expectations and experimental results.
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